Lesson Plan

Subject	:	Applied Thermodynamics (MEC-202A)
Lesson plan Duration	:	15 Weeks
Work load (lecture) per week	:	Lectures: 3 hours/Week

Lecture No	Description
1	Brief detail regarding syllabus and overview of subject, books required
2	Unit-1 : Steam Generators: Introduction; classification of boilers; comparison of fire tube and water tube boiler; their advantages.
3	Description of boiler; Lancashire; locomotive; Babcock; Wilcox
4	Boiler mountings; stop valve; safety valve; blow off valve; feed check etc.; water level indicator; fusible plug; pressure gauge
5	Boiler accessories; feed pump; feed water heater
6	Preheater; super heater; economizer; natural draught chimney design
7	Artificial draught; stream jet draught; mechanical draught
8	Calculation of boiler efficiency and equivalent evaporation.
9	Numerical on boiler efficiency.
10	Numerical on chimney design.
11	Unit-2, Vapour Power Cycles: Simple and modified Rankine cycle
12	Effect of operating parameters on Rankine cycle performance
13	Effect of superheating; effect of maximum pressure
14	effect of exhaust pressure; reheating and regenerative Rankine cycle
15	Types of feed water heater; reheat factor
16	Binary vapour cycle
17	Simple steam engine, compound engine
18	Function of various components
19	Problems

20	problems	
21	Unit -3 : Steam Nozzle: Function of steam nozzle; shape of nozzle for subsonic and supersonics flow of stream.	
22	Variation of velocity; area of specific volume; steady state energy equation	
23	Continuity equation; nozzle efficiency; critical pressure ratio for maximum discharge	
24	Physical explanation of critical pressure; super saturated flow of steam	
25	Design of steam nozzle. Advantage of steam condensation	
26	Component of steam condensing plant; types of condensers	
27	Air leakage in condensers; Dalton's law of partial pressure	
28	Problems	
29	Vacuum efficiency; calculation of cooling water requirement	
30	Air expansion pump.	
31	Unit-4: Steam Turbines: Introduction; classification of steam turbine; impulse turbine	
32	Working principle; compounding of impulse turbine; velocity diagram	
33	Calculation of power output and efficiency; maximum efficiency of a single stage impulse turbine	
34	Design of impulse turbine blade section	
35	Impulse, reaction turbine; working principle; degree of reaction.	
36	Parsons turbine; velocity diagram	
37	Calculation of power output; efficiency of blade height	
38	Condition of maximum efficiency	
39	Internal losses in steam turbine; governing of steam turbine	
40	Numerical & doubts	